Big Data Reviews

  • Rethinking Big Data Analytics with Google Cloud (Cloud Next '18)

    In this session, we'll discuss Google Cloud’s vision and engineering strategy that can help you move big data analytics solutions to the next level of benefits. Google Cloud Platform combines powerful serverless solutions for enterprise data warehousing, streaming analytics, managed Spark and Hadoop, modern BI, planet-scale data lake, and AI. We'll share how our customers are seamlessly integrating GCP services to innovative big data solutions, explain new partner solutions that are making it easy for you to capture value from big data, and demonstrate new solutions and product capabilities.


    Event schedule →

    Watch more Spotlight sessions here →
    Next ‘18 All Sessions playlist →

    Subscribe to the Google Cloud channel! →
  • Lecture: Mathematics of Big Data and Machine Learning

    MIT RES.LL-005 D4M: Signal Processing on Databases, Fall 2012
    View the complete course:
    Instructor: Jeremy Kepner

    Jeremy Kepner talked about his newly released book, "Mathematics of Big Data," which serves as the motivational material for the D4M course.

    License: Creative Commons BY-NC-SA
    More information at
    More courses at
  • What Is Big Data? & How Big Data Is Changing The World!

    In this video, we’ll be discussing big data – more specifically, what big data is, the exponential rate of growth of data, how we can utilize the vast quantities of data being generated as well as the
    implications of linked data on big data.

    - Starting off we'll look at, how data has been used as a tool from the origins of human evolution, starting at the hunter-gatherer age and leading up to the present information age. Afterwards, we'll look into many statistics demonstrating the exponential rate of growth and future growth of data.

    - Following that we'll discuss, what exactly big data is and delving deeper into the types of data, structured and unstructured and how they will be analyzed both by humans and machine learning (AI). We'll also discuss the next evolution of data,
    linked data, and how it will change the world and the web!

    - To conclude we'll briefly overview the role cloud computing will play with big data!

    Become A Channel Member, Patron or Make A Donation ➤

    Get A Free Audiobook & 1 Month Free Trial ➤

    Recommended Books ➤

    📖 "Hello World" by Hannah Fry
    📖 "Enlightenment Now" by Steven Pinker
    📖 "Team Human" by Douglas Rushkoff
    📖 "The Wisdom of Finance" by Mihir Desai
    📖 "Weapons of Math Destruction" by Cathy O'Neil

    Check Out Our Website & Blog ➤

    Join Our Discord ➤

    Like Our Facebook Page & Follow Our Subreddit ➤

    Subscribe To Our Email List ➤

    Soundtrack ➤

    ♫ 00:00 "G.I. Joe" by MadD3E

    ♫ 00:29 "Sun" by HOME

    ♫ 02:54 "If I'm Wrong" by HOME

    ♫ 04:22 "New Machines" by HOME

    ♫ 07:16 "Decay" by HOME

    ♫ 11:10 "Scanlines" by HOME

    ♫ 11:56 "Pyxis" by HOME

    ♫ 16:17 "Resonance" by HOME

    ♫ 18:51 "Head First" by HOME

    ♫ 19:53 "June" by Aire Atlantica

    Producer ➤ Ankur Bargotra

    Follow The Producers Social Media Accounts ➤
  • Lecture: Mathematics of Big Data and Machine Learning

    MIT RES.LL-005 D4M: Signal Processing on Databases, Fall 2012
    View the complete course:
    Instructor: Jeremy Kepner

    Jeremy Kepner talked about his newly released book, "Mathematics of Big Data," which serves as the motivational material for the D4M course.

    License: Creative Commons BY-NC-SA
    More information at
    More courses at
  • Big data: why should you care?

    In the second episode of Five Minute Masterminds, the author and broadcaster Timandra Harkness introduces big data, explaining how big it actually is, its impact on recent political elections and how it can change your life 
    Can we all move to Mars? Prof Martin Rees on space exploration – video
    'Big Data, Does Size Matter? by Timandra Harkness
    Guardian privacy policy
  • ¿Qué es el Big Data?

    ¿Sabes que es el Big Data? ¿Por qué los datos son el nuevo petroleo y como su análisis y procesamiento pueden transformarse en soluciones para la ciudadanía o nuevas oportunidades para las empresas? En este video te lo contamos en detalle.

    Conceptos que debes aprenderás en este video:

    * Datos estructurados
    * Datos no estructurados
    * Bases de datos
    * Data warehouse
    * On premise
    * Cloud computing
    * Machine learning
    * ETL (Extraction Transform Load)
    * Ciclo de vida de los datos
    * Las 5 V del Big Data

    Este 17 y 18 de mayo se llevará a cabo el EDcamp México 2019. Dos días de tecnología, networking y emprendimiento con el equipo de EDteam por primera vez en CDMX.

    Conoce todos los detalles y compra tus entradas en



    El 18 de mayo en CDMX, Manu Rodriguez, Customer Enginner de Google en Cloud Computing y profesor de EDteam dictará el Workshop Big Data on Google. Es una sesión presencial de tres horas. Infórmate más en:



    🔥 Aprende programación, diseño y emprendimiento con la mejor metodología en español. Un futuro de oportunidades laborales y de emprendimiento te está esperando.

    Web y comunidad EDteam

    Sé un estudiante premium en EDteam


  • [2019] Big Data & AI for Bad Guys

    Conferencia de Chema Alonso en el Foro Pilot 2019 en Aragón impartida en Zaragoza.
    Contactar con Chema Alonso:
    Más información en el libro de "Machine Learning aplicado a Ciberseguridad" de 0xWord:
  • Всё о Data Science / Big data и дополненная реальность / Интервью с Data Scientist

    В сегодняшнем выпуске у меня в гостях Data Scientist компании Banuba - Вячеслав Архипов.
    Слава провел полный экскурс в мир data sciense и анализа данных. Мы поговорили про нейронные сети, про генетические алгоритмы, про data sets, про big data, про machine learning, про deep learning, про биржевую торговлю, про augmented reality (дополненная реальность) и про многое другое.
    Мощное техническое интервью с математиком!
    Так что, заваривайте чаинский и приятного просмотра! 😎

    Канал Славы:
    Сайт компании Banuba:
    Ссылки из выпуска:
    Аудио-версия выпуска:

    Специализация "Data Science" от SkillFactory:
    Промокод на получение скидки 10%: АйТиБорода

    P.S. Все таймкоды выпуска есть в первом закрепленном комментарии 😉


    🔹 Patreon -
    🔹 YouTube -
    🔹 SoundCloud -
    🔹 iTunes -
    🔹 Telegram -
    🔹 LinkedIn -
    🔹 Instagram -
    🔹 Discord -

    #itbeard #айтиборода #datascience
  • Big Data Analytics using Python and Apache Spark | Machine Learning Tutorial

    Apache Spark is the most active Apache project, and it is pushing back Map Reduce. It is fast, general purpose and supports multiple programming languages, data sources and management systems. More and more organizations are adapting Apache Spark to build big data solutions through batch, interactive and stream processing paradigms. The demand for trained professionals in Spark is going through the roof. Being a new technology, there aren't enough training sources to provide easy guidance on building end-to-end solutions.

    Section 1: Introduction
    Lecture 1
    About the course
    Lecture 2
    About V2 Maestros
    Lecture 3
    Resource Bundle
    Section 2: Overview
    Lecture 4
    Hadoop Overview
    Lecture 5
    HDFS Architecture
    Lecture 6
    Map Reduce - How it works
    Lecture 7
    Map Reduce - Example
    Lecture 8
    Hadoop Stack
    Lecture 9
    What is Spark?
    Lecture 10
    Spark Architecture - Part 1
    Lecture 11
    Spark Architecture - Part 2
    Lecture 12
    Installing Spark and Setting up for Python
    Quiz 1
    Hadoop and Spark Architecture
    5 questions
    Section 3: Programming with Spark
    Lecture 13
    Spark Transformations
    Lecture 14
    Spark Actions
    Lecture 15
    Advanced Spark Programming
    Lecture 16
    Python - Spark Programming examples 1
    Lecture 17
    Python - Spark Programming Examples 2
    Quiz 2
    Data Engineering with Spark
    5 questions
    Lecture 18
    PRACTICE Exercise : Spark Operations
    Section 4: Spark SQL
    Lecture 19
    Spark SQL Overview
    Lecture 20
    Python - Spark SQL Examples
    Quiz 3
    Spark SQL
    2 questions
    Lecture 21
    PRACTICE Exercise : Spark SQL
    Section 5: Spark Streaming
    Lecture 22
    Streaming with Apache Spark
    Lecture 23
    Python - Spark Streaming examples
    Quiz 4
    Spark Streaming
    3 questions
    Section 6: Real time Data Science
    Lecture 24
    Basic Elements of Data Science
    Lecture 25
    The Dataset
    Lecture 26
    Learning from relationships
    Lecture 27
    Modeling and Prediction
    Lecture 28
    Data Science Use Cases
    Lecture 29
    Types of Analytics
    Lecture 30
    Types of Learning
    Lecture 31
    Doing Data Science in real time with Spark
    Quiz 5
    Spark Data Science
    5 questions
    Section 7: Machine Learning with Spark
    Lecture 32
    Spark Machine Learning
    Lecture 33
    Analyzing Results and Errors
    Lecture 34
    Linear Regression
    Lecture 35
    Spark Use Case : Linear Regression
    Lecture 36
    Decision Trees
    Lecture 37
    Spark Use Case : Decision Trees Classification
    Lecture 38
    Principal Component Analysis
    Lecture 39
    Random Forests Classification
    Lecture 40
    Python Use Case : Random Forests & PCA
    Lecture 41
    Text Preprocessing with TF-IDF
    Lecture 42
    Naive Bayes Classification
    Lecture 43
    Spark Use Case : Naive Bayes & TF-IDF
    Lecture 44
    K-Means Clustering
    Lecture 45
    Spark Use Case : K-Means
    Lecture 46
    Recommendation Engines
    Lecture 47
    Spark Use Case : Collaborative Filtering
    Lecture 48
    Real Time Twitter Data Sentiment Analysis
    Quiz 6
    Spark Machine Learning Algorithms
    4 questions
    Lecture 49
    PRACTICE Exercise : Spark Clustering
    Lecture 50
    PRACTICE Exercise : Spark Classification
    Section 8: Conclusion
    Lecture 51
    Closing Remarks
    Lecture 52
    BONUS Lecture : Other courses you should check out
  • Big Data Explained

    Learn more about data in the cloud:

    Big data has been around the past few decades in a traditional form factor of big data systems such as a data warehouse but starting around the year 2000 Hadoop helped expand these integrated systems to be more open in terms of the data and analytics that could be supported.

    Check out this lightboard video with Torsten Steinbach from IBM Cloud as he goes through the evolution of big data and analytics and how serverless technology has made a big impact.

    Get started for free on IBM Cloud:
The Number One Menace to All Organizations

Learn more about how to protect your organization against this growing menace


Big Data News